solution to Problem 23

chaines 28 Apr 2009 03:29

part A

- Input(N
_{0}) - N
_{1}=S(N_{0},1,1) - N
_{1}^{prime}=S^{neg}(N_{0},1,1) - N2=s(N
_{1}^{prime},3,1) - merg(N
_{1},N_{2})=N_{3}

That section takes care of (X_{1} V X_{3}) now on to (~X_{1} V X_{2} V ~X_{3})

part B

- N
_{4}=S(N_{3},1,0) this gets ~X_{1} - N
_{4}^{prime}=S^{neg}(N_{3},1,0) - N
_{5}=S(N_{4}^{prime},2,1) now we have X_{2} - N
_{5}^{prime}=S^{neg}(N_{4}^{prime},2,1) - N
_{6}=(N_{5}^{prime},3,0) now we have ~X_{3} - merg(N
_{4},N_{5},N_{6})

A.2 = 111 101 110 100

A.3 = 011 010 001 000

A.4 = 011 001

A.5 = 111 101 110 100 011 001

B.1 = 011 001

B.2 = 111 101 110 100

B.3 = 111 110

B.4 = 101 100

B.5 = 100

B.6= 100 111 110 011 001